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1. EXECUTIVE SUMMARY 

 
Deliverable D3.1 “Report on modular architecture of AIDE multimodal interface” 
(delivery date scheduled for June, 2) has been written in the framework of WP3 and 
is mainly related to Task 3.1 (“Design and development of a modular architecture for 
the multimodal interface”, closed at month 16) and Task 3.7 (“Experimental tests of 
the modular architecture”, that will finish at month 18). The goal of these tasks is to 
develop and test a modular standard architecture in order to guarantee the 
communication among the several subsystems constituting the AIDE platform. 
To this purpose, a literature analysis on the approaches based on Component-Based 
Software Engineer (CBSE) has been performed in order to find the most appropriate 
solution for meeting the AIDE requirements. They have been determined on the 
basis of the results of WP2 and of an internal survey within the consortium. The 
gathered information led us to define the Yet Another Robot Platform (YARP) as the 
most suitable component based software for managing communication among the 
different subsystems of the AIDE platform.  
 
This document describes the research activities and the achieved results on the 
design and testing of the modular software architecture developed during months 1-
16 of the AIDE project. In particular, in the following details about the software 
architecture, the implementation of the communication nodes, the preliminary tests 
on the bidirectional communication between YARP and other development 
environments, and the preliminary experimental tests with part of the AIDE 
subsystems will be provided. 
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2. INTRODUCTION 

 
The AIDE system aims to provide a multimodal interface to assist compromised 
individuals in their daily life by analysing and extracting relevant information from 
the environment and context factors and from the identification of residual abilities, 
behaviours, emotional state and intentions of the user. This will be achieved by 
integrating data from different acquisition devices and processing software (Figure 
1). In particular, the user’s state and intentions will be inferred by using the 
following sensory system: 1) Brain-machine interface (BMI) based on EEG brain 
activity; 2) myoelectrical EMG surface interface based on surface EMG; 3) Wearable 
physiological sensors to monitor physiological signals, such as heart rate, skin 
conductance level, temperature or respiration rate; 4) Wearable electro-
oculography (EOG) system; and 5) Kinetic and dynamic information provided by the 
upper limb exoskeleton. The context factors, the current position of the users in 
their home setting, the gaze patterns of the users within the environment, the 3D 
shape and pose of the objects at which the users stare at and the user’s head and 
mouth pose will be estimated by means of cameras and gaze tracking systems. 

 

Figure 1: Schematic representation of the systems that should communicate through YARP. 

One of the required features of this architecture is to guarantee the communication 
among the different blocks of the AIDE system independently of the chosen 
platform and software language. Therefore, it has been necessary to develop a 
modular standard architecture for the multimodal interface supporting its 
development both at integration and development levels, facilitating a standardized 
communication between different blocks. 
 
An approach based on CBSE [1] has been adopted to ensure that data can be 
exchanged efficiently and effectively, through a standardized communication and in 
such a way that allows resizing and/or modifying the multimodal interface. It will let 
the user to employ only the modules that are needed in a specific scenario 
application. CBSE offers a number of advantages, e.g. (i) cost and time reduction for 
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building large and complicated systems, (ii) improvement of the software quality by 
ameliorating the performance of the components, (iii) detection of defects within 
the systems thanks to component approach. 
Several software frameworks that are grounded on a CBSE approach have been 
proposed in the literature. In particular, the Robot Operating System (ROS) [2] is a 
set of software libraries and tools that help users build robot applications. A ROS 
system comprises a number of independent nodes, each of which communicates 
with the other nodes using a publish/subscribe messaging model. This makes ROS 
flexible and adaptable to the needs of the user. Nodes in ROS do not have to 
necessarily be on the same system (allowing use of multiple computers) or even on 
the same architecture. The main limitation of this system is that it has been 
developed for working under Linux.  
The Open Robot Control Software (OROCOS) [3] is a free software and a modular 
framework for robot and machine control addition; with the Orocos Real-Time 
Toolkit (RTT) it is possible to perform real-time, on-line interactive and component 
based applications.  
MARIE (Mobile and Autonomous Robotics Integration Environment) [4] is a free 
software tool using a component-based approach to build robotics software systems 
by integrating previously-existing and new software components. Its main 
characteristics lean on distributed computing on heterogeneous platforms and on 
concurrent use of different communication protocols, mechanisms and standards. 
 
Based on the requirements defined in the framework of the AIDE project, the 
component based software YARP [2] has been selected. It is a middleware for 
robotics and supports building a robot control system as a collection of programs 
communicating in a peer-to-peer way, with an extensible family of connection types 
(tcp, udp, multicast, local, ...) that can be swapped in and out to match user needs. 
Namely, it is a framework (i.e., a set of libraries and executable programs) that can 
be installed on top of Windows OS, permitting it to handle the low level 
communication with the devices.  
Hence, a modular architecture based on the messaging system YARP has been 
adopted in the AIDE project for connecting the different subsystems of the platform 
among each other by creating ad hoc nodes. YARP messaging system allows 
associating a component of the multimodal interface to a node and connecting and 
disconnecting nodes quickly and easily. Each node has a name and a specific port 
number. The communication protocol, however, can be multiple and is defined at 
the time of the link between nodes. The YARP server plays the main role; it can be 
queried at any time to request information and services to the nodes. 
Therefore, the choice of relying on the messaging system YARP guarantees the 
modularity of the system, making possible to resize the whole system by 
removing/adding some modules without compromising the system performances. It 
has been simply realized by turning off the nodes whose counterpart is missing. 
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The reliability of the proposed approach has been successfully tested during 
preliminary experimental tests. 
The document is structured as follows: the system requirements and the proposed 
modular architecture are described in Section 3; in Section 4, the results obtained 
during two sessions of tests are reported. In particular, during the first trials of tests, 
performance of the communication between the different types of nodes have been 
assessed. Subsequently, the feasibility and reliability of using YARP for 
communicating with the AIDE platform subsystems have been demonstrated during 
an experimental validation with part of the AIDE subsystems. Conclusions and 
deviations from the planned objectives and the consequent corrective actions are 
discussed in Sections 5 and 6, respectively.  
 

3. DESCRIPTION OF WORK 

 

SYSTEM REQUIREMENTS 

 
In order to define the system requirements for proceeding with the design of the 
architecture, it has been necessary to acquire information about the subsystems 
composing the AIDE platform. To this purpose, a survey within the consortium has 
been performed; the resulting data are reported in the following: 
• Data sending frequency: in the range 20 Hz-3KHz. The optimal value is 2 KHz. 
• Length of data in bytes: min: 1, max: 255 bytes. 
• Range/scale/options: if this information is provided, YARP can control and 

pre-elaborate the received/sent data; 
• Development language and environment: C++ language, and Matlab and 

Labview as development environment. 
Moreover, in order to reduce the size and the weight of the system to be embedded 
on the wheelchair it has been decided to use only one high-performance PC running 
under Windows OS for managing the communication among the AIDE subsystems 
and all the software packages. The rate of data exchange among the systems is 
determined by the lowest frequency in the platform. 

DESCRIPTION OF THE ARCHITECTURE 

 
As shown in Figure 2, the proposed modular architecture has to manage the 
communication among the acquisition devices (i.e. the EEG, supervised by EKUT in 
the framework of WP4, the EOG by UMH in WP3, the EMG by SSSA in WP4, the gaze 
estimator of competence of UPV in WP5, the physiological signals, monitored and 
processed by UMH and EKUT in WP, the indoor localization system and the voice 
recognizer, by ZED in WP5, and the vision systems by UPV in WP5), the software for 
user intention and affective state estimation (responsible EKUT and SSSA in the 
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framework of WP4), the module for user activity recognition in real ADL tasks 
(responsible UMH in WP5), the exoskeletons (developed and controlled in the 
framework of WP3 and WP6 by UHM, SSSA, FhG-IPA and UCBM) and the 
communication, control & entertainment devices (provided by BJ in WP6). The 
communication among all the AIDE subsystems has been guaranteed independently 
of the chosen platform and software language.  
 

 
Figure 2: The AIDE architecture showing the different components of the AIDE system. 

 
The proposed solution relies on YARP, since it allows addressing all the requirements 
listed in the previous section, included the use of a single high-performance 
computer for managing the whole multimodal interface. The overall architecture is 
shown in Fig. 2, where all the YARP nodes are explicitly drawn. 
The chosen communication protocol within the YARP system is the TCP/IP since it is 
the default communication protocol within YARP and is more stable than the UDP 
protocol. Each component of the multimodal interface is associated to one node; 
therefore, the connection or disconnection of a component can be simply 
performed by connecting and disconnecting nodes. Each node is identified by a label 
and has a unique communication port on the YARP server that can be queried at any 
time to request information and services to the nodes (Figure 3). Hence, modularity 
is easily achieved by removing modules or adding new ones as nodes, without 
compromising system performance. All messages pass through the central nodes to 
check their integrity and to be redirected to the correct destination.  
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Figure 3: The proposed solution relying on YARP with the single high-performance computer (on which the YARP 
server runs) which manage the components of the multimodal interface. Each component is associated to one 

node. 

Within the YARP communication system, it is possible to use three types of nodes:   
• The native node, which is programmed with libraries provided by the YARP 

platform. This node can send and receive any type of message with any 
protocol (i.e. full-duplex channel); 

• The text node is an external node that can be developed in any programming 
language supporting TCP/UDP socket. These nodes can send or receive (i.e. 
half-duplex channel) only ASCII format (text) messages; 

• The YARP node is an external node simulating a native node (in the following 
it is named YARP external node). To simulate a native node means to force a 
client/server TCP to behave in a way similar to the native nodes. In this way 
each simulated native node can send or receive all the messages or headers 
as a native node can do to interact with the YARP server and with all the 
linked nodes. The strength of this type of nodes is the ability to send one or 
more data without any formatting (e.g. no ASCII data), even though 
performance can be lower than the other two types of nodes. The advantage 
is to to avoid an additional computational burden due to type casting or 
conversion of incoming data. 

In Figure 4 an example of the YARP working principle is shown.  
 

 
Figure 4: Example of YARP working principle 
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In particular, the YARP server developed by UCBM can transmit to and receive 
messages from the subsystems of the AIDE platform by using a full-duplex channel 
and employing native nodes written in C++. On the other hand, the AIDE subsystems 
can transmit or receive by using one of the aforementioned three types of nodes 
(native, text or YARP). As shown in Fig. 4, the subsystems developed in languages 
different from C++ (e.g. MATLAB, LabView, etc…) are connected to the core 
architecture through text nodes and YARP nodes. Since, they cannot be used for 
bidirectional communication, two different nodes (in Fig. 4 named TX, i.e. 
transmitter, and RX, i.e. receiver) are required for the subsystems that need to both 
send and receive messages from different nodes.  
 

4. PRELIMINARY EXPERIMENTAL RESULTS  

 
Experimental tests have been performed within Task 3.7 to verify and assess 
performance of the proposed software architecture. They have been grouped into 
two sessions: preliminary tests for assessing performance of communication 
between the different types of nodes (and consequently extract indications about 
the most appropriate nodes for a fast enough and reliable communication); 
subsequently, an experimental validation with part of the AIDE subsystems has been 
carried out in order to demonstrate feasibility and reliability of using YARP for 
communicating with the AIDE platform subsystems. 
 

EXPERIMENTAL SESSION 1 

 
Preliminary tests have been conducted in order to build a platform enabling correct 
handling of all the signals composing the multimodal interface. In particular, a test 
to demonstrate the feasibility and the communication performance through YARP 
between native nodes and non-native nodes has been performed. The YARP server 
has been installed on a PC running under Windows 10. During the initial tests, data 
provided by SSSA about joint positions of the arm exoskeleton have been used. 
10000 elements from two arrays, called S_AA_DesiredPosition and 
S_FE_DesiredPosition, have been transmitted from a Matlab script to the YARP 
server (Figure 3). 
The two nodes /matlabY and /matlabT have been created in Matlab. The former is a 
YARP external node exchanging data through TCP/IP connection with TCP protocol, 
while the latter is a Text external node exchanging data through TCP/IP connection 
with TEXT protocol.  
Afterwards, two additional nodes have been created on C++ Visual Studio, 
corresponding to the previous ones and called /inBin and /in. The first couple of 
nodes (i.e. /matlabY- /inBin) through TCP/IP connection and TCP-YARP protocol 
reached 500 msg/s (500 Hz), the second one (i.e. /matlabT-/in) reached 2956 msg/s 
(2956 Hz) on a TCP/IP connection and Text-YARP protocol. 
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Figure 5: Example of YARP Communication 

 
 
The obtained performance is summarized in Table 1. As shown, when messages are 
sent through YARP external nodes it is possible to reach a frequency of maximum 
500 Hz without losing data. When messages are sent through Text external nodes 
the maximum frequency without data lost is around 3000 Hz. Therefore, the 
performed tests have shown that the TEXT-YARP protocol through TCP/IP 
connection guarantees the best performance in term of data loss. Although it has 
been found that the best performance can be achieved if messages are sent in Text 
mode (ASCII) up to 3 KHz, the use of YARP external nodes can reduce the 
computational burden required by the text nodes for type casting. Therefore, YARP 
external nodes seems to be the best compromise between performance and 
computational burden when the working frequency are low, up to a maximum value 
of 500 Hz. 

Table 1: Obtained performance during preliminary communication tests 

TX node RX node Frequency [Hz] Data lost [msg] Delay [ms] 

/matlabY /inBin 500 0 0 

/matlabT /in 4235 35 0 

/matlabT /in 2956 0 0.2 
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EXPERIMENTAL SESSION 2 

 
As a natural prosecution of the experimental tests on YARP performance, the 
implemented software architecture has been tested during the experimental session 
carried out at Scuola Superiore Sant’Anna (Pisa, Italy) in May 2016. The involved 
AIDE partners were UMH, UCBM, SSSA and EKUT. 
This first AIDE experimental session aimed at providing a preliminary evidence of the 
feasibility to allow a user to drink from a glass thanks to the AIDE multimodal robotic 
system. 
During this experimentation, the following AIDE subsystems were used together 
(Fig. 6) and communication was managed by YARP:  

• Shoulder-elbow exoskeleton; 
• Hand exoskeleton and forearm pronation/supination device; 
• Biosignal processing and recording system: i.e. the wireless EEG recording 

system, the wearable glasses for EOG acquisition, the device for measuring 
skin conductivity, a wearable strap placed around the chest for acquiring 
ECG and respiratory plethysmography and a main processing unit; 

• Gaze tracking and context recognition devices. 
 

 

Figure 6: Experimental scenario 

UCBM has been the responsible for creating all the communication nodes within the 
aforementioned subsystems of the AIDE platform. The proposed experimental 
scenario is shown in Figure 6. The arm, wrist and hand exoskeletons have been 
adapted to the subject arm and hand. In the starting configuration, the shoulder-
elbow and wrist exoskeletons have been placed in a configuration comfortable for 
the user and the hand exoskeleton have been opened.  
The gaze tracking glasses and cameras have been used to identify the object and its 
location in the workspace. EoG Left signal has been used to trigger the exoskeleton 
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to move to the target (the object or the mouth). The control of the arm exoskeleton 
ensured the target reaching. After opening the hand exoskeleton has been moved 
back to the initial position automatically. The EoG Right signal could be used at any 
times by the user to stop the execution of the movement and go back to the initial 
position. 
 
The main processing unit has been a computer with Windows 10 OS representing 
the core of the architecture (i.e. the YARP server). It is a permanent means of 
communication among the architecture nodes. The software developed in C++ 
exchange messages with the other subsystems of the platform by using native 
nodes, which employ full-duplex channels. YARP external nodes simulating the 
behaviour of native nodes have been adopted for allowing the communication with 
software modules that are not developed in C++ language, such as MATLAB or 
LabView, and for communicating with systems running under Linux (e.g. cameras). It 
has been chosen to use YARP external nodes instead of text nodes since they can 
optimally work without data loss in the AIDE communication frequency range (as 
detailed in the following). Furthermore, the use of YARP external nodes notably 
reducing the computational load required by the text nodes for type casting 
significantly improving the system performance. 
Hence, YARP external nodes have been created under MATLAB, LABVIEW and Linux 
for sending or receiving data to/from the other nodes of the architecture. A TCP/IP 
connection with TCP protocol has been adopted for managing the communication 
among the external nodes and between external nodes and the YARP server.  
An overview of the whole communication system adopted in this experimental 
session is shown in Figure 5. The YARP external nodes under Matlab are in light blue, 
the YARP external nodes under LabView are in blue, the YARP external nodes under 
Linux are in yellow and the native nodes are in green (C++ application with official 
YARP libraries).  
 
In Figure 7, the label of each transmitter and receiver nodes are also reported. Only 
the transmission of the EEG signals (processed by the BCI2000 software) has been 
handled through a direct TCP connection (localhost:8000) without YARP, because 
the software (i.e. BCI2000) did not allow modifications. In this way the utility of 
YARP (i.e. the control of data loss and of active communication) has been lost, but it 
did not caused problems. In fact, data from the BCI module consisted of one byte of 
“0” and “2” (ASCII) characters, corresponding to trigger signals, transmitted in a 
continuous way with a frequency higher than the one of the Finite State Machine. 
Furthermore, the Finite State Machine detects the data from the BCI module only if 
the same value (i.e. “0” or “2”) is received at least two consecutive times. Therefore, 
the loss of a character has not been critical for the system global performance. 
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Figure 7: Overview of the YARP communication system. The native nodes are in green and all the remaining nodes 

are simulated native nodes written in several programming languages or environment. 

 
Each node (in YARP application) had a specific dedicated thread making the 
communication a multithread framework and therefore making the interaction (i.e. 
access to a node or its disconnection) with the various nodes decoupled from the 
main linear loop. In this way, each node could be connected or disconnected at any 
time without causing delays in systems communications. It made the YARP server 
application, and consequently the communication, more dynamic and reactive. 
 
During the experimental sessions, the communication between YARP and each 
subsystem of the AIDE platform has been tested.  
Furthermore, the communication among all the subsystems described above has 
been tested during the experimental tests on one participant (a volunteer healthy 
subject). He has been asked to identify the object to be grasped (i.e. a glass) and to 
drink from it for 10 times. For measuring performance of the YARP architecture, the 
timing of sent and received data has been measured and a screenshot of the 
obtained values during one trial is shown in Figure 8.  
The messages among the several parts of the AIDE platform have been exchanged 
through TCP at a frequency of about 20 Hz (50 ms), which is the frequency of the 
exoskeleton Finite State Machine (i.e. the lowest frequency in the platform). No data 
have been lost during the trials due to the adopted low frequency.  
 
The performed tests demonstrated the feasibility and reliability of using YARP for 
communicating with the AIDE platform subsystems. In particular, the 
communication with YARP server has been tested when all the nodes were running 
and exchanging information each other. The tests revealed no data loss for data 
exchange rate around 45-55 ms, imposed by the exoskeleton Finite State Machine. 
Tests have been performed up to 4.5 KHz and the results revealed that no data have 
been lost up to 2 KHz. 
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Figure 8: Screenshot of the measured time for sending and receiving data. The values are reported in seconds. 

 

5. CONCLUSIONS 

 
This deliverable is focused on the design and development of a modular architecture 
for the multimodal interface able to guarantee a reliable and robust communication 
among the several subsystems constituting the AIDE platform. 
Starting from a detailed literature analysis, the YARP system has been chosen as the 
most appropriate messaging system for satisfying the set of requirements for the 
AIDE platform. The demanded architecture for the communication among the 
several subsystems constituting the AIDE platform has been developed and 
successfully tested. All related tasks contributing to the deliverable have been 
accomplished according to defined system requirements.  
YARP communication among nodes regarding EEG, EoG, physiological signals (i.e. 
heart rate, GSR, skin conductance etc.), Finite State Machine, gaze tracking and 
object identification system has been tested using TCP/IP protocol and a frequency 
rate of 20 Hz. The YARP server and the receiver and transmitter nodes did not 
reported errors that could imply system stop. The dynamic connection and 
disconnection of the nodes allowed us not following a precise order in starting each 
component.  
Therefore, the YARP communication system ensured effective and efficient data 
exchange and offered high reliability, control on data loss, control on active 
communication and modularity. Moreover, the system guaranteed the 
communication among some the AIDE subsystems independently of the chosen 
platform and software language. The first series of the tests revealed the feasibility 
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of the YARP messaging system for meeting the AIDE project requirements in terms 
of performance and control.  
The system is ready to use for upcoming experimental tests. 
 
 

6. DEVIATIONS FROM THE PLANNED OBJECTIVES AND CORRECTIVE 
ACTIONS 

 
During the project, two modifications to the architecture depicted in the proposal 
were carried out: 1) removal of the data acquisition system, called “Signal Server” 
and 2) replacement of Robot Operating System (ROS) with Yet Another Robot 
Platform (YARP) messaging system. The main reasons of these choices can be 
summarized as follows: 
1) The Signal Server was responsible for receiving messages from all the devices and 
sensors and processing all these signals to produce standardized information for 
ROS. The complexity of the Signal Server, due to the diversity of information to 
receive in terms of its data type and frequency, led to remove the Signal Server. In 
fact, the Signal Server would provide interfaces of many different types and include 
different processing pipelines to transform the data in parallel. As a consequence of 
this, the Signal Server was potentially a bottle neck for the whole system and it was 
agreed by the consortium to find a better approach by giving more intelligence to all 
the input devices and sensors. In other words, the input information would be 
restricted to a small amount of data types, and the developer of each input device 
would be the responsible to define and develop the appropriate processes to adapt 
its data. 
2) Most of the partners were developing software modules running under Windows 
OS, while ROS is a software running under Linux OS. The adoption of ROS did not 
allow using only one PC, or else would require the installation of a virtual machine 
with Linux (thus entailing loss of performance). Therefore, since the target hardware 
for the entire solution became a Windows computer attached to a wheelchair, it has 
been decided to replace ROS with YARP. Using this design, the Signal Server 
disappears and all the communications are carried by YARP. 
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