
 AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 1 of 17

Deliverable D3.1: Report on modular
architecture of AIDE multimodal

interface

01/06/2016

AIDE

Adaptive Multimodal Interfaces to Assist Disabled People in Daily Activities

Project number: 645322

Start of the project (duration): February 1st, 2015 (36 months)

Research and Innovation Action

HORIZON 2020 Programme

LEIT Pilar KET ICT
Revision: V.1

Project co-funded by the European Commission within the Horizon 2020 Programme (2014-
2020)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission
Services)

CO Confidential, only for members of the consortium (including the Commission
Services)

 AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 2 of 17

All rights reserved

This document may not be copied, reproduced or modified in whole or in part for
any purpose without the written permission from the AIDE Consortium. In addition
to such written permission to copy, reproduce or modify this document in whole or
part, an acknowledgement of the authors of the document and all applicable
portions of the copyright must be clearly referenced.

List of reviewers

Issue Date Implemented by Control of Changes

v.0.1 27/05/2016 UCBM Draft version

v0.2 27/05/2016 UMH Proof reading and minor changes

v1.0 01/06/2016 UCBM Final version

v2.0 01/06/2016 UMH Approved version with minor
changes

 AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 3 of 17

TABLE OF CONTENTS

1. Executive summary ... 4

2. Introduction .. 5

3. Description of work ... 7

SYstem requirements ... 7

Description of the architecture .. 7

4. Preliminary experimental results .. 10

Experimental session 1 ... 10

Experimental session 2 ... 12

5. conclusions .. 15

6. Deviations from the planned objectives and corrective actions 16

References ... 17

AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 4 of 17

1. EXECUTIVE SUMMARY

Deliverable D3.1 “Report on modular architecture of AIDE multimodal interface”
(delivery date scheduled for June, 2) has been written in the framework of WP3 and
is mainly related to Task 3.1 (“Design and development of a modular architecture for
the multimodal interface”, closed at month 16) and Task 3.7 (“Experimental tests of
the modular architecture”, that will finish at month 18). The goal of these tasks is to
develop and test a modular standard architecture in order to guarantee the
communication among the several subsystems constituting the AIDE platform.
To this purpose, a literature analysis on the approaches based on Component-Based
Software Engineer (CBSE) has been performed in order to find the most appropriate
solution for meeting the AIDE requirements. They have been determined on the
basis of the results of WP2 and of an internal survey within the consortium. The
gathered information led us to define the Yet Another Robot Platform (YARP) as the
most suitable component based software for managing communication among the
different subsystems of the AIDE platform.

This document describes the research activities and the achieved results on the
design and testing of the modular software architecture developed during months 1-
16 of the AIDE project. In particular, in the following details about the software
architecture, the implementation of the communication nodes, the preliminary tests
on the bidirectional communication between YARP and other development
environments, and the preliminary experimental tests with part of the AIDE
subsystems will be provided.

AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 2.3 Page 5 of 17

2. INTRODUCTION

The AIDE system aims to provide a multimodal interface to assist compromised
individuals in their daily life by analysing and extracting relevant information from
the environment and context factors and from the identification of residual abilities,
behaviours, emotional state and intentions of the user. This will be achieved by
integrating data from different acquisition devices and processing software (Figure
1). In particular, the user’s state and intentions will be inferred by using the
following sensory system: 1) Brain-machine interface (BMI) based on EEG brain
activity; 2) myoelectrical EMG surface interface based on surface EMG; 3) Wearable
physiological sensors to monitor physiological signals, such as heart rate, skin
conductance level, temperature or respiration rate; 4) Wearable electro-
oculography (EOG) system; and 5) Kinetic and dynamic information provided by the
upper limb exoskeleton. The context factors, the current position of the users in
their home setting, the gaze patterns of the users within the environment, the 3D
shape and pose of the objects at which the users stare at and the user’s head and
mouth pose will be estimated by means of cameras and gaze tracking systems.

Figure 1: Schematic representation of the systems that should communicate through YARP.

One of the required features of this architecture is to guarantee the communication
among the different blocks of the AIDE system independently of the chosen
platform and software language. Therefore, it has been necessary to develop a
modular standard architecture for the multimodal interface supporting its
development both at integration and development levels, facilitating a standardized
communication between different blocks.

An approach based on CBSE [1] has been adopted to ensure that data can be
exchanged efficiently and effectively, through a standardized communication and in
such a way that allows resizing and/or modifying the multimodal interface. It will let
the user to employ only the modules that are needed in a specific scenario
application. CBSE offers a number of advantages, e.g. (i) cost and time reduction for

AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 6 of 17

building large and complicated systems, (ii) improvement of the software quality by
ameliorating the performance of the components, (iii) detection of defects within
the systems thanks to component approach.
Several software frameworks that are grounded on a CBSE approach have been
proposed in the literature. In particular, the Robot Operating System (ROS) [2] is a
set of software libraries and tools that help users build robot applications. A ROS
system comprises a number of independent nodes, each of which communicates
with the other nodes using a publish/subscribe messaging model. This makes ROS
flexible and adaptable to the needs of the user. Nodes in ROS do not have to
necessarily be on the same system (allowing use of multiple computers) or even on
the same architecture. The main limitation of this system is that it has been
developed for working under Linux.
The Open Robot Control Software (OROCOS) [3] is a free software and a modular
framework for robot and machine control addition; with the Orocos Real-Time
Toolkit (RTT) it is possible to perform real-time, on-line interactive and component
based applications.
MARIE (Mobile and Autonomous Robotics Integration Environment) [4] is a free
software tool using a component-based approach to build robotics software systems
by integrating previously-existing and new software components. Its main
characteristics lean on distributed computing on heterogeneous platforms and on
concurrent use of different communication protocols, mechanisms and standards.

Based on the requirements defined in the framework of the AIDE project, the
component based software YARP [2] has been selected. It is a middleware for
robotics and supports building a robot control system as a collection of programs
communicating in a peer-to-peer way, with an extensible family of connection types
(tcp, udp, multicast, local, ...) that can be swapped in and out to match user needs.
Namely, it is a framework (i.e., a set of libraries and executable programs) that can
be installed on top of Windows OS, permitting it to handle the low level
communication with the devices.
Hence, a modular architecture based on the messaging system YARP has been
adopted in the AIDE project for connecting the different subsystems of the platform
among each other by creating ad hoc nodes. YARP messaging system allows
associating a component of the multimodal interface to a node and connecting and
disconnecting nodes quickly and easily. Each node has a name and a specific port
number. The communication protocol, however, can be multiple and is defined at
the time of the link between nodes. The YARP server plays the main role; it can be
queried at any time to request information and services to the nodes.
Therefore, the choice of relying on the messaging system YARP guarantees the
modularity of the system, making possible to resize the whole system by
removing/adding some modules without compromising the system performances. It
has been simply realized by turning off the nodes whose counterpart is missing.

AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 7 of 17

The reliability of the proposed approach has been successfully tested during
preliminary experimental tests.
The document is structured as follows: the system requirements and the proposed
modular architecture are described in Section 3; in Section 4, the results obtained
during two sessions of tests are reported. In particular, during the first trials of tests,
performance of the communication between the different types of nodes have been
assessed. Subsequently, the feasibility and reliability of using YARP for
communicating with the AIDE platform subsystems have been demonstrated during
an experimental validation with part of the AIDE subsystems. Conclusions and
deviations from the planned objectives and the consequent corrective actions are
discussed in Sections 5 and 6, respectively.

3. DESCRIPTION OF WORK

SYSTEM REQUIREMENTS

In order to define the system requirements for proceeding with the design of the
architecture, it has been necessary to acquire information about the subsystems
composing the AIDE platform. To this purpose, a survey within the consortium has
been performed; the resulting data are reported in the following:
• Data sending frequency: in the range 20 Hz-3KHz. The optimal value is 2 KHz.
• Length of data in bytes: min: 1, max: 255 bytes.
• Range/scale/options: if this information is provided, YARP can control and

pre-elaborate the received/sent data;
• Development language and environment: C++ language, and Matlab and

Labview as development environment.
Moreover, in order to reduce the size and the weight of the system to be embedded
on the wheelchair it has been decided to use only one high-performance PC running
under Windows OS for managing the communication among the AIDE subsystems
and all the software packages. The rate of data exchange among the systems is
determined by the lowest frequency in the platform.

DESCRIPTION OF THE ARCHITECTURE

As shown in Figure 2, the proposed modular architecture has to manage the
communication among the acquisition devices (i.e. the EEG, supervised by EKUT in
the framework of WP4, the EOG by UMH in WP3, the EMG by SSSA in WP4, the gaze
estimator of competence of UPV in WP5, the physiological signals, monitored and
processed by UMH and EKUT in WP, the indoor localization system and the voice
recognizer, by ZED in WP5, and the vision systems by UPV in WP5), the software for
user intention and affective state estimation (responsible EKUT and SSSA in the

AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 8 of 17

framework of WP4), the module for user activity recognition in real ADL tasks
(responsible UMH in WP5), the exoskeletons (developed and controlled in the
framework of WP3 and WP6 by UHM, SSSA, FhG-IPA and UCBM) and the
communication, control & entertainment devices (provided by BJ in WP6). The
communication among all the AIDE subsystems has been guaranteed independently
of the chosen platform and software language.

Figure 2: The AIDE architecture showing the different components of the AIDE system.

The proposed solution relies on YARP, since it allows addressing all the requirements
listed in the previous section, included the use of a single high-performance
computer for managing the whole multimodal interface. The overall architecture is
shown in Fig. 2, where all the YARP nodes are explicitly drawn.
The chosen communication protocol within the YARP system is the TCP/IP since it is
the default communication protocol within YARP and is more stable than the UDP
protocol. Each component of the multimodal interface is associated to one node;
therefore, the connection or disconnection of a component can be simply
performed by connecting and disconnecting nodes. Each node is identified by a label
and has a unique communication port on the YARP server that can be queried at any
time to request information and services to the nodes (Figure 3). Hence, modularity
is easily achieved by removing modules or adding new ones as nodes, without
compromising system performance. All messages pass through the central nodes to
check their integrity and to be redirected to the correct destination.

AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 9 of 17

Figure 3: The proposed solution relying on YARP with the single high-performance computer (on which the YARP
server runs) which manage the components of the multimodal interface. Each component is associated to one

node.

Within the YARP communication system, it is possible to use three types of nodes:
• The native node, which is programmed with libraries provided by the YARP

platform. This node can send and receive any type of message with any
protocol (i.e. full-duplex channel);

• The text node is an external node that can be developed in any programming
language supporting TCP/UDP socket. These nodes can send or receive (i.e.
half-duplex channel) only ASCII format (text) messages;

• The YARP node is an external node simulating a native node (in the following
it is named YARP external node). To simulate a native node means to force a
client/server TCP to behave in a way similar to the native nodes. In this way
each simulated native node can send or receive all the messages or headers
as a native node can do to interact with the YARP server and with all the
linked nodes. The strength of this type of nodes is the ability to send one or
more data without any formatting (e.g. no ASCII data), even though
performance can be lower than the other two types of nodes. The advantage
is to to avoid an additional computational burden due to type casting or
conversion of incoming data.

In Figure 4 an example of the YARP working principle is shown.

Figure 4: Example of YARP working principle

AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 10 of 17

In particular, the YARP server developed by UCBM can transmit to and receive
messages from the subsystems of the AIDE platform by using a full-duplex channel
and employing native nodes written in C++. On the other hand, the AIDE subsystems
can transmit or receive by using one of the aforementioned three types of nodes
(native, text or YARP). As shown in Fig. 4, the subsystems developed in languages
different from C++ (e.g. MATLAB, LabView, etc…) are connected to the core
architecture through text nodes and YARP nodes. Since, they cannot be used for
bidirectional communication, two different nodes (in Fig. 4 named TX, i.e.
transmitter, and RX, i.e. receiver) are required for the subsystems that need to both
send and receive messages from different nodes.

4. PRELIMINARY EXPERIMENTAL RESULTS

Experimental tests have been performed within Task 3.7 to verify and assess
performance of the proposed software architecture. They have been grouped into
two sessions: preliminary tests for assessing performance of communication
between the different types of nodes (and consequently extract indications about
the most appropriate nodes for a fast enough and reliable communication);
subsequently, an experimental validation with part of the AIDE subsystems has been
carried out in order to demonstrate feasibility and reliability of using YARP for
communicating with the AIDE platform subsystems.

EXPERIMENTAL SESSION 1

Preliminary tests have been conducted in order to build a platform enabling correct
handling of all the signals composing the multimodal interface. In particular, a test
to demonstrate the feasibility and the communication performance through YARP
between native nodes and non-native nodes has been performed. The YARP server
has been installed on a PC running under Windows 10. During the initial tests, data
provided by SSSA about joint positions of the arm exoskeleton have been used.
10000 elements from two arrays, called S_AA_DesiredPosition and
S_FE_DesiredPosition, have been transmitted from a Matlab script to the YARP
server (Figure 3).
The two nodes /matlabY and /matlabT have been created in Matlab. The former is a
YARP external node exchanging data through TCP/IP connection with TCP protocol,
while the latter is a Text external node exchanging data through TCP/IP connection
with TEXT protocol.
Afterwards, two additional nodes have been created on C++ Visual Studio,
corresponding to the previous ones and called /inBin and /in. The first couple of
nodes (i.e. /matlabY- /inBin) through TCP/IP connection and TCP-YARP protocol
reached 500 msg/s (500 Hz), the second one (i.e. /matlabT-/in) reached 2956 msg/s
(2956 Hz) on a TCP/IP connection and Text-YARP protocol.

AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 11 of 17

Figure 5: Example of YARP Communication

The obtained performance is summarized in Table 1. As shown, when messages are
sent through YARP external nodes it is possible to reach a frequency of maximum
500 Hz without losing data. When messages are sent through Text external nodes
the maximum frequency without data lost is around 3000 Hz. Therefore, the
performed tests have shown that the TEXT-YARP protocol through TCP/IP
connection guarantees the best performance in term of data loss. Although it has
been found that the best performance can be achieved if messages are sent in Text
mode (ASCII) up to 3 KHz, the use of YARP external nodes can reduce the
computational burden required by the text nodes for type casting. Therefore, YARP
external nodes seems to be the best compromise between performance and
computational burden when the working frequency are low, up to a maximum value
of 500 Hz.

Table 1: Obtained performance during preliminary communication tests

TX node RX node Frequency [Hz] Data lost [msg] Delay [ms]

/matlabY /inBin 500 0 0

/matlabT /in 4235 35 0

/matlabT /in 2956 0 0.2

AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 12 of 17

EXPERIMENTAL SESSION 2

As a natural prosecution of the experimental tests on YARP performance, the
implemented software architecture has been tested during the experimental session
carried out at Scuola Superiore Sant’Anna (Pisa, Italy) in May 2016. The involved
AIDE partners were UMH, UCBM, SSSA and EKUT.
This first AIDE experimental session aimed at providing a preliminary evidence of the
feasibility to allow a user to drink from a glass thanks to the AIDE multimodal robotic
system.
During this experimentation, the following AIDE subsystems were used together
(Fig. 6) and communication was managed by YARP:

• Shoulder-elbow exoskeleton;
• Hand exoskeleton and forearm pronation/supination device;
• Biosignal processing and recording system: i.e. the wireless EEG recording

system, the wearable glasses for EOG acquisition, the device for measuring
skin conductivity, a wearable strap placed around the chest for acquiring
ECG and respiratory plethysmography and a main processing unit;

• Gaze tracking and context recognition devices.

Figure 6: Experimental scenario

UCBM has been the responsible for creating all the communication nodes within the
aforementioned subsystems of the AIDE platform. The proposed experimental
scenario is shown in Figure 6. The arm, wrist and hand exoskeletons have been
adapted to the subject arm and hand. In the starting configuration, the shoulder-
elbow and wrist exoskeletons have been placed in a configuration comfortable for
the user and the hand exoskeleton have been opened.
The gaze tracking glasses and cameras have been used to identify the object and its
location in the workspace. EoG Left signal has been used to trigger the exoskeleton

AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 13 of 17

to move to the target (the object or the mouth). The control of the arm exoskeleton
ensured the target reaching. After opening the hand exoskeleton has been moved
back to the initial position automatically. The EoG Right signal could be used at any
times by the user to stop the execution of the movement and go back to the initial
position.

The main processing unit has been a computer with Windows 10 OS representing
the core of the architecture (i.e. the YARP server). It is a permanent means of
communication among the architecture nodes. The software developed in C++
exchange messages with the other subsystems of the platform by using native
nodes, which employ full-duplex channels. YARP external nodes simulating the
behaviour of native nodes have been adopted for allowing the communication with
software modules that are not developed in C++ language, such as MATLAB or
LabView, and for communicating with systems running under Linux (e.g. cameras). It
has been chosen to use YARP external nodes instead of text nodes since they can
optimally work without data loss in the AIDE communication frequency range (as
detailed in the following). Furthermore, the use of YARP external nodes notably
reducing the computational load required by the text nodes for type casting
significantly improving the system performance.
Hence, YARP external nodes have been created under MATLAB, LABVIEW and Linux
for sending or receiving data to/from the other nodes of the architecture. A TCP/IP
connection with TCP protocol has been adopted for managing the communication
among the external nodes and between external nodes and the YARP server.
An overview of the whole communication system adopted in this experimental
session is shown in Figure 5. The YARP external nodes under Matlab are in light blue,
the YARP external nodes under LabView are in blue, the YARP external nodes under
Linux are in yellow and the native nodes are in green (C++ application with official
YARP libraries).

In Figure 7, the label of each transmitter and receiver nodes are also reported. Only
the transmission of the EEG signals (processed by the BCI2000 software) has been
handled through a direct TCP connection (localhost:8000) without YARP, because
the software (i.e. BCI2000) did not allow modifications. In this way the utility of
YARP (i.e. the control of data loss and of active communication) has been lost, but it
did not caused problems. In fact, data from the BCI module consisted of one byte of
“0” and “2” (ASCII) characters, corresponding to trigger signals, transmitted in a
continuous way with a frequency higher than the one of the Finite State Machine.
Furthermore, the Finite State Machine detects the data from the BCI module only if
the same value (i.e. “0” or “2”) is received at least two consecutive times. Therefore,
the loss of a character has not been critical for the system global performance.

AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 14 of 17

Figure 7: Overview of the YARP communication system. The native nodes are in green and all the remaining nodes

are simulated native nodes written in several programming languages or environment.

Each node (in YARP application) had a specific dedicated thread making the
communication a multithread framework and therefore making the interaction (i.e.
access to a node or its disconnection) with the various nodes decoupled from the
main linear loop. In this way, each node could be connected or disconnected at any
time without causing delays in systems communications. It made the YARP server
application, and consequently the communication, more dynamic and reactive.

During the experimental sessions, the communication between YARP and each
subsystem of the AIDE platform has been tested.
Furthermore, the communication among all the subsystems described above has
been tested during the experimental tests on one participant (a volunteer healthy
subject). He has been asked to identify the object to be grasped (i.e. a glass) and to
drink from it for 10 times. For measuring performance of the YARP architecture, the
timing of sent and received data has been measured and a screenshot of the
obtained values during one trial is shown in Figure 8.
The messages among the several parts of the AIDE platform have been exchanged
through TCP at a frequency of about 20 Hz (50 ms), which is the frequency of the
exoskeleton Finite State Machine (i.e. the lowest frequency in the platform). No data
have been lost during the trials due to the adopted low frequency.

The performed tests demonstrated the feasibility and reliability of using YARP for
communicating with the AIDE platform subsystems. In particular, the
communication with YARP server has been tested when all the nodes were running
and exchanging information each other. The tests revealed no data loss for data
exchange rate around 45-55 ms, imposed by the exoskeleton Finite State Machine.
Tests have been performed up to 4.5 KHz and the results revealed that no data have
been lost up to 2 KHz.

AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 15 of 17

Figure 8: Screenshot of the measured time for sending and receiving data. The values are reported in seconds.

5. CONCLUSIONS

This deliverable is focused on the design and development of a modular architecture
for the multimodal interface able to guarantee a reliable and robust communication
among the several subsystems constituting the AIDE platform.
Starting from a detailed literature analysis, the YARP system has been chosen as the
most appropriate messaging system for satisfying the set of requirements for the
AIDE platform. The demanded architecture for the communication among the
several subsystems constituting the AIDE platform has been developed and
successfully tested. All related tasks contributing to the deliverable have been
accomplished according to defined system requirements.
YARP communication among nodes regarding EEG, EoG, physiological signals (i.e.
heart rate, GSR, skin conductance etc.), Finite State Machine, gaze tracking and
object identification system has been tested using TCP/IP protocol and a frequency
rate of 20 Hz. The YARP server and the receiver and transmitter nodes did not
reported errors that could imply system stop. The dynamic connection and
disconnection of the nodes allowed us not following a precise order in starting each
component.
Therefore, the YARP communication system ensured effective and efficient data
exchange and offered high reliability, control on data loss, control on active
communication and modularity. Moreover, the system guaranteed the
communication among some the AIDE subsystems independently of the chosen
platform and software language. The first series of the tests revealed the feasibility

AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 16 of 17

of the YARP messaging system for meeting the AIDE project requirements in terms
of performance and control.
The system is ready to use for upcoming experimental tests.

6. DEVIATIONS FROM THE PLANNED OBJECTIVES AND CORRECTIVE
ACTIONS

During the project, two modifications to the architecture depicted in the proposal
were carried out: 1) removal of the data acquisition system, called “Signal Server”
and 2) replacement of Robot Operating System (ROS) with Yet Another Robot
Platform (YARP) messaging system. The main reasons of these choices can be
summarized as follows:
1) The Signal Server was responsible for receiving messages from all the devices and
sensors and processing all these signals to produce standardized information for
ROS. The complexity of the Signal Server, due to the diversity of information to
receive in terms of its data type and frequency, led to remove the Signal Server. In
fact, the Signal Server would provide interfaces of many different types and include
different processing pipelines to transform the data in parallel. As a consequence of
this, the Signal Server was potentially a bottle neck for the whole system and it was
agreed by the consortium to find a better approach by giving more intelligence to all
the input devices and sensors. In other words, the input information would be
restricted to a small amount of data types, and the developer of each input device
would be the responsible to define and develop the appropriate processes to adapt
its data.
2) Most of the partners were developing software modules running under Windows
OS, while ROS is a software running under Linux OS. The adoption of ROS did not
allow using only one PC, or else would require the installation of a virtual machine
with Linux (thus entailing loss of performance). Therefore, since the target hardware
for the entire solution became a Windows computer attached to a wheelchair, it has
been decided to replace ROS with YARP. Using this design, the Signal Server
disappears and all the communications are carried by YARP.

AIDE – D3.1 Report on modular architecture of AIDE multimodal interface

AIDE – Deliverable 3.1 Page 17 of 17

REFERENCES

1. C.Schlegel, A. Steck and A. Lotz (2011). Robotic Software Systems: From Code-

Driven to Model-Driven Software Development. Book of Robotic Systems -
Applications, Control and Programming, Chap 23, 473-502

2. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.Y. Ng.
(2009). ROS: an open-source Robot Operating System. ICRA workshop on open
source software, Vol.3, no. 3.2

3. (http://www.orocos.org/)
4. http://marie.sourceforge.net/wiki/index.php/Main_Page]
5. Fitzpatrick, P., Ceseracciu, E., Domenichelli, D., Paikan, A., Metta, G., and Natale, L.,

“A middle way for robotics middleware.”, Journal of Software Engineering for
Robotics, 5(2): 42-49, 2014 - http://www.yarp.it/

	1. Executive summary
	2. Introduction
	3. Description of work
	SYstem requirements
	Description of the architecture

	4. Preliminary experimental results
	Experimental session 1
	Experimental session 2

	5. conclusions
	6. Deviations from the planned objectives and corrective actions
	References

